On Ruelle–Perron–Frobenius Operators. II. Convergence Speeds
نویسندگان
چکیده
We study Ruelle operators on expanding and mixing dynamical systems with potential function satisfying the Dini condition. We give an estimate for the convergence speed of the iterates of a Ruelle operator. Our proof avoids Markov partitions. This is the second part of our research on Ruelle operators.
منابع مشابه
On Ruelle–Perron–Frobenius Operators. I. Ruelle Theorem
We study Ruelle–Perron–Frobenius operators for locally expanding and mixing dynamical systems on general compact metric spaces associated with potentials satisfying the Dini condition. In this paper, we give a proof of the Ruelle Theorem on Gibbs measures. It is the first part of our research on the subject. The rate of convergence of powers of the operator will be presented in a forthcoming pa...
متن کاملSpectral theory of transfer operators∗
We give a survey on some recent developments in the spectral theory of transfer operators, also called Ruelle-Perron-Frobenius (RPF) operators, associated to expanding and mixing dynamical systems. Different methods for spectral study are presented. Topics include maximal eigenvalue of RPF operators, smooth invariant measures, ergodic theory for chain of markovian projections, equilibrium state...
متن کاملCompact weighted Frobenius-Perron operators and their spectra
In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001